Product Class: Kit

HiScribe® T7 High Yield RNA Synthesis Kit

Now includes separate tube of DTT

Product Introduction

  • Up to 180 μg of RNA per reaction from 1 μg of control template
  • Enables full substitution of NTPs for labeling and incorporation of modified bases
  • Linearized control template included for verification of RNA synthesis
  • Getting ready to scale up RNA synthesis? Download our new technical note “Scaling of High-Yield In vitro Transcription Reactions for Linear Increase of RNA Production” for a generalized set of recommendations for synthesizing high yields of RNA.
Catalog # Size Concentration
E2040S 50.0 reactions

Protocols, Manuals & Usage

Protocols

  1. DNA Template Preparation (E2040)
  2. RNA Synthesis with Modified Nucleotides (E2040)
  3. Purification of Synthesized RNA (E2040)
  4. Standard RNA Synthesis (E2040)
  5. Capped RNA Synthesis (E2040)
  6. High Specific Activity Radiolabeled RNA Probe Synthesis (E2040)
  7. Evaluation of Reaction Products (E2040)
  8. Poly(A) Tailing of RNA using E. coli Poly(A) Polymerase (NEB# M0276)
  9. Protocol for Co-transcriptional capping using CleanCap® Reagent AG from TriLink and HiScribe T7 High Yield RNA Synthesis Kit from New England Biolabs®

Manuals

The Product Manual includes details for how to use the product, as well as details of its formulation and quality controls.

Application Notes

FAQs & Troubleshooting

FAQs

  1. Can I use the Monarch RNA Cleanup Kits to cleanup my in vitro transcription (IVT) reaction?
  2. How can I improve on a low yield of RNA from the transcription reaction?
  3. Are modified nucleotides included in the kit?
  4. Do I need to add DTT to the reaction?

Troubleshooting

Control Reaction

The FLuc control template DNA is a linearized plasmid containing the firefly luciferase gene under the transcriptional control of T7 promoter. The size of the runoff transcript is 1.8 kb. The control reaction should yield ≥ 150 μg RNA transcript in 2 hours.

If the control reaction is not working, there may be technical problems during reaction set up. Repeat the reaction by following the protocol carefully; take any precaution to avoid RNase contamination. Contact NEB for technical assistance.

The control plasmid sequence can be found within the DNA Sequences and Maps Tool under the name "FLuc Control Plasmid". The FLuc control template is generated by linearizing the plasmid with StuI.

Low Yield of Full-length RNA

If the transcription reaction with your template generates full-length RNA, but the yield is significantly lower than expected, it is possible that contaminants in the DNA template are inhibiting the RNA polymerase, or the DNA concentration may be incorrect. Alternatively, additional purification of DNA template may be required. Phenol-chloroform extraction is recommended (see template DNA preparation section).

Low Yield of Short Transcript

High yields of short transcripts (< 0.3 kb) are achieved by extending incubation time and increasing the amount of template. Incubation of reactions up to 16 hours (overnight) or using up to 2 μg of template will help to achieve maximum yield.

RNA Transcript Smearing on Denaturing Gel

If the RNA appears degraded (e.g. smeared) on denaturing agarose or polyacrylamide gel, DNA template is contaminated with RNase. DNA templates contaminated with RNase can affect the length and yield of RNA synthesized (a smear below the expected transcript length). If the plasmid DNA template is contaminated with RNase, perform phenol/chloroform extraction, then ethanol precipitate and dissolve the DNA in nuclease-free water (see template DNA preparation section).

RNA Transcript of Larger Size than Expected

If the RNA transcript appears larger than expected on a denaturing gel, template plasmid DNA may be incompletely digested. Even small amounts of undigested circular DNA can produce large amounts of long transcripts. Check template for complete digestion, if undigested plasmid is confirmed, repeat restriction enzyme digestion.

Larger size bands may also be observed when the RNA transcript is not completely denatured due to the presence of strong secondary structures.

RNA Transcript of Smaller Size than Expected

If denaturing gel analysis shows the presence of smaller bands than the expected size, it is most likely due to premature termination by the polymerase. Some sequences which resemble T7 RNA Polymerase termination signals will cause premature termination. Incubating the transcription reaction at lower temperatures, for example at 30°C, may increase the proportion of full-length transcript, however the yield will be decreased. For GC rich templates, or templates with secondary structures, incubation at 42°C may improve yield of full-length transcript.

If premature termination of transcription is found in high specific activity radiolabeled RNA probe synthesis, increase the concentration of “limiting NTP”. Additional "cold" NTP can be added to the reaction to increase the proportion of full-length transcript, however the improvement in yield of full-length product will compromise the specific activity of the probe.

 

Tech Tips

It is important to mix each component well before setting up reactions. 

Make sure reactions are thoroughly mixed.

We recommend incubating the reactions in a dry air incubator or in a PCR machine.