Store at -20C

Phospho-IκBα (Ser32) (14D4) Rabbit mAb (Biotinylated)

Orders: 877-616-CELL (2355)

orders@cellsignal.com

Support: 877-678-TECH (8324)

Web: info@cellsignal.com

cellsignal.com

3 Trask Lane | Danvers | Massachusetts | 01923 | USA

For Research Use Only. Not for Use in Diagnostic Procedures.

Reactivity: H M R Mk	Sensitivity: Endogenous	MW (kDa): 40	Source/Isotype: Rabbit IgG	UniProt ID: #P25963	Entrez-Gene l 4792
	• •			Dilution 1:1000	
	• •			ate (pH 7.4) dibasic, 2	mg/ml BSA, and
,	Phospho-IkB α (Ser32) (14D4) Rabbit mAb (Biotinylated) detects endogenous levels of IkB α only when phosphorylated at Ser32.			f IκBα only when	
d to C 00% ogy:	hicken, Bovine, Dog, F	Pig, Guinea Pig			
	Monoclonal antibody is produced by immunizing animals with a synthetic phosphopeptide corresponding to residues surrounding Ser32 of human $I\kappa B\alpha$.				
aı	This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-IκBα (Ser32) (14D4) Rabbit mAb #2859.				
	40				
in pi 7) of	The NF-κB/Rel transcription factors are present in the cytosol in an inactive state complexed with the inhibitory IκB proteins (1-3). Activation occurs via phosphorylation of IκBα at Ser32 and Ser36 followed by proteasome-mediated degradation that results in the release and nuclear translocation of active NF-κB (3-7). IκBα phosphorylation and resulting Rel-dependent transcription are activated by a highly diverse group of extracellular signals including inflammatory cytokines, growth factors, and chemokines. Kinases that phosphorylate IκB at these activating sites have been identified (8).				
2. 3. 4. 5. 6. 7.	 Baeuerle, P.A. and Baltimore, D. (1988) Science 242, 540-6. Beg, A.A. and Baldwin, A.S. (1993) Genes Dev 7, 2064-70. Finco, T.S. et al. (1994) Proc Natl Acad Sci USA 91, 11884-8. Brown, K. et al. (1995) Science 267, 1485-8. Brockman, J.A. et al. (1995) Mol Cell Biol 15, 2809-18. Traenckner, E.B. et al. (1995) EMBO J 14, 2876-83. Chen, Z.J. et al. (1996) Cell 84, 853-62. Karin, M. and Ben-Neriah, Y. (2000) Annu Rev Immunol 18, 621-63. 				
	HMRMk Sistivity Plant to Cook Ogy: ion Mre on Ti in pr 7) of pl rences 1. 2. 3. 4. 5. 6. 7.	Application Western Blotting Supplied in 136 mM Na 50% glycerol. Store at - itivity Phospho-IκBα (Ser32) (phosphorylated at Ser3 I to Chicken, Bovine, Dog, I phosphorylated at Ser3 I to On This Cell Signaling Techantibody is residues surrounding S On This Cell Signaling Techantibody is expected to (Ser32) (14D4) Rabbit in The NF-κB/Rel transcription inhibitory IκB proteins (iproteasome-mediated of 7). IκBα phosphorylation of extracellular signals in phosphorylate IκB at the rences 1. Baeuerle, P.A. and Baldwith 3. Finco, T.S. et al. (1994. Brown, K. et al. (1995. Brockman, J.A. et al. 6. Traenckner, E.B. et a 7. Chen, Z.J. et al. (1999)	Application Western Blotting Supplied in 136 mM NaCl, 2.6 mM KCl, 50% glycerol. Store at –20°C. Do not alid phosphorylated at Ser32. Chicken, Bovine, Dog, Pig, Guinea Pig Monoclonal antibody is produced by immoresidues surrounding Ser32 of human lik This Cell Signaling Technology antibody antibody is expected to exhibit the same (Ser32) (14D4) Rabbit mAb #2859. The NF-κB/Rel transcription factors are prinhibitory lkB proteins (1-3). Activation of proteasome-mediated degradation that rown 7). IkBα phosphorylation and resulting Rown fextracellular signals including inflamm phosphorylate lkB at these activating site strences 1. Baeuerle, P.A. and Baltimore, D. (1988) 2. Beg, A.A. and Baldwin, A.S. (1993) Geg. 3. Finco, T.S. et al. (1994) Proc Natl Acades. 4. Brown, K. et al. (1995) Science 267, 15. Brockman, J.A. et al. (1995) EMBO Co. 7. Chen, Z.J. et al. (1996) Cell 84, 853-6	Application Western Blotting Supplied in 136 mM NaCl, 2.6 mM KCl, 12 mM sodium phospha 50% glycerol. Store at –20°C. Do not aliquot the antibodies. Phospho-IκBα (Ser32) (14D4) Rabbit mAb (Biotinylated) detects phosphorylated at Ser32. Chicken, Bovine, Dog, Pig, Guinea Pig Monoclonal antibody is produced by immunizing animals with a residues surrounding Ser32 of human IκBα. This Cell Signaling Technology antibody is conjugated to biotin to antibody is expected to exhibit the same species cross-reactivity (Ser32) (14D4) Rabbit mAb #2859. The NF-κB/Rel transcription factors are present in the cytosol in inhibitory IκB proteins (1-3). Activation occurs via phosphorylatic proteasome-mediated degradation that results in the release an 7). IκΒα phosphorylation and resulting Rel-dependent transcription fextracellular signals including inflammatory cytokines, growth phosphorylate IκB at these activating sites have been identified rences 1. Baeuerle, P.A. and Baltimore, D. (1988) Science 242, 540-6. 2. Beg, A.A. and Baldwin, A.S. (1993) Genes Dev 7, 2064-70. 3. Finco, T.S. et al. (1994) Proc Natl Acad Sci USA 91, 11884-8. 4. Brown, K. et al. (1995) Science 267, 1485-8. 5. Brockman, J.A. et al. (1995) EMBO J 14, 2876-83. 7. Chen, Z.J. et al. (1996) Cell 84, 853-62.	Application Western Blotting Application Western Blotting Supplied in 136 mM NaCl, 2.6 mM KCl, 12 mM sodium phosphate (pH 7.4) dibasic, 2 50% glycerol. Store at ~20°C. Do not aliquot the antibodies. Phospho-lkBα (Ser32) (14D4) Rabbit mAb (Biotinylated) detects endogenous levels of phosphorylated at Ser32. Chicken, Bovine, Dog, Pig, Guinea Pig Monoclonal antibody is produced by immunizing animals with a synthetic phosphopep residues surrounding Ser32 of human lκBα. Monoclonal antibody is produced by immunizing animals with a synthetic phosphopep residues surrounding Ser32 of human lκBα. This Cell Signaling Technology antibody is conjugated to biotin under optimal condition antibody is expected to exhibit the same species cross-reactivity as the unconjugated (Ser32) (14D4) Rabbit mAb #2859. 40 The NF-κB/Rel transcription factors are present in the cytosol in an inactive state compinhibitory lκB proteins (1-3). Activation occurs via phosphorylation of lκBα at Ser32 and proteasome-mediated degradation that results in the release and nuclear translocation 7). lκBα phosphorylation and resulting Rel-dependent transcription are activated by a lof extracellular signals including inflammatory cytokines, growth factors, and chemoking phosphorylate lκB at these activating sites have been identified (8). rences 1. Baeuerle, P.A. and Baltimore, D. (1988) Science 242, 540-6. 2. Beg, A.A. and Baldwin, A.S. (1993) Genes Dev 7, 2064-70. 3. Finco, T.S. et al. (1994) Proc Natl Acad Sci USA 91, 11884-8. 4. Brown, K. et al. (1995) Science 267, 1485-8. 5. Brockman, J.A. et al. (1995) Science 267, 1485-8. 5. Brockman, J.A. et al. (1995) EMBO J 14, 2876-83. 7. Chen, Z.J. et al. (1996) Cell 84, 853-62.

Western Blot Buffer

IMPORTANT: For western blots, incubate membrane with diluted primary antibody in 5% w/v BSA, 1X TBS, 0.1% Tween® 20 at 4°C with gentle shaking, overnight.

Applications Key

WB: Western Blotting

1/1/24, 10:50 AM

Phospho-IκBα (Ser32) (14D4) Rabbit mAb (Biotinylated) (#5209) Datasheet Without Images Cell Signaling ...

Cross-Reactivity Key

H: human M: mouse R: rat Hm: hamster Mk: monkey Vir: virus Mi: mink C: chicken Dm: D. melanogaster X: Xenopus Z: zebrafish B: bovine Dq: dog Pq: pig Sc: S. cerevisiae Ce: C. elegans Hr: horse

GP: Guinea Pig Rab: rabbit All: all species expected

Trademarks and Patents

Limited Uses

Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
All other trademarks are the property of their respective owners. Visit cellsignal.com/trademarks for more information

Except as otherwise expressly agreed in a writing signed by a legally authorized representative of CST, the following terms apply to Products provided by CST, its affiliates or its distributors. Any Customer's terms and conditions that are in addition to, or different from, those contained herein, unless separately accepted in writing by a legally authorized representative of CST, are rejected and are of no force or effect.

Products are labeled with For Research Use Only or a similar labeling statement and have not been approved, cleared, or licensed by the FDA or other regulatory foreign or domestic entity, for any purpose. Customer shall not use any Product for any diagnostic or therapeutic purpose, or otherwise in any manner that conflicts with its labeling statement. Products sold or licensed by CST are provided for Customer as the end-user and solely for research and development uses. Any use of Product for diagnostic, prophylactic or therapeutic purposes, or any purchase of Product for resale (alone or as a component) or other commercial purpose, requires a separate license from CST. Customer shall (a) not sell, license, loan, donate or otherwise transfer or make available any Product to any third party, whether alone or in combination with other materials, or use the Products to manufacture any commercial products, (b) not copy, modify, reverse engineer, decompile, disassemble or otherwise attempt to discover the underlying structure or technology of the Products, or use the Products for the purpose of developing any products or services that would compete with CST products or services, (c) not alter or remove from the Products any trademarks, trade names, logos, patent or copyright notices or markings, (d) use the Products solely in accordance with CST Product Terms of Sale and any applicable documentation, and (e) comply with any license, terms of service or similar agreement with respect to any third party products or services used by Customer in connection with the Products.