RNA isolation from plant and fungi

User manual

NucleoSpin® RNA Plant and Fungi

March 2017 / Rev. 02
RNA isolation from plant and fungi

Protocol-at-a-glance (Rev. 02)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
</table>
| **1 Homogenize and lyse sample** | | 500 µL PFL
10–50 µL PFR
Mix
56 °C, 5 min
14,000 x g,
1 min |
| **2 Filtrate lysate** | | Load lysate
14,000 x g,
1 min |
| **3 Adjust RNA binding conditions** | | 500 µL PFB
Mix
RT, 5 min |
| **4 Bind RNA** | | Load 650 µL sample
14,000 x g,
30 s
Load residual sample
14,000 x g,
30 s |
| **5 Wash silica membrane** | | 1st wash 500 µL PFW1
2nd wash 500 µL PFW2
3rd wash 500 µL PFW2
14,000 x g,
1 min after each washing step |
| **6 Elute RNA** | | 50 µL RNase-free H₂O
RT, 1 min
14,000 x g,
1 min |
Table of contents

1
1.1 Kit contents 4
1.2 Reagents, consumables, and equipment to be supplied by user 5
1.3 About this user manual 5

2 Product description 6
2.1 The basic principle 6
2.2 Kit specifications 6
2.3 Handling, preparation, and storage of starting materials 7
2.4 Lysis and disruption of sample material 7
2.5 Elution procedures 8

3 Storage conditions and preparation of working solutions 9

4 Safety instructions 10

5 Protocols 12
5.1 RNA isolation from plant and fungal material 14
5.2 RNA isolation from acidic samples (e.g., fruits) 18

6 Appendix 21
6.1 Removal of DNA 21
6.2 Troubleshooting 22
6.3 Ordering Information 26
6.4 Product use restriction / warranty 27
1 Components

1.1 Kit contents

<table>
<thead>
<tr>
<th>REF</th>
<th>10 preps</th>
<th>50 preps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lysis Buffer PFL</td>
<td>8 mL</td>
<td>30 mL</td>
</tr>
<tr>
<td>Reduction Buffer PFR</td>
<td>5 mL</td>
<td>5 mL</td>
</tr>
<tr>
<td>Binding Buffer PFB</td>
<td>10 mL</td>
<td>45 mL</td>
</tr>
<tr>
<td>Wash Buffer PFW1</td>
<td>8 mL</td>
<td>30 mL</td>
</tr>
<tr>
<td>Wash Buffer PFW2 (concentrate)*</td>
<td>6 mL</td>
<td>25 mL</td>
</tr>
<tr>
<td>RNase-free H₂O</td>
<td>13 mL</td>
<td>13 mL</td>
</tr>
<tr>
<td>NucleoSpin® RNA Plant and Fungi Filter</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>NucleoSpin® RNA Plant and Fungi Columns (light blue rings – plus Collection Tube)</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>Collection Tubes (2 mL)</td>
<td>30</td>
<td>150</td>
</tr>
<tr>
<td>Collection Tubes (1.5 mL)</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>User Manual</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

* For preparation of working solutions and storage, see section 3.
1.2 Reagents, consumables, and equipment to be supplied by user

Reagents
- 96–100 % ethanol (for preparation of Buffer PFW2)
- Neutralization Buffer PFN for processing acidic samples (see section 6.3 for ordering information)

Consumables
- Disposable pipette tips
- NucleoSpin® Bead Tubes Type G (optional, see section 6.3 for ordering information)

Equipment
- Manual pipettes
- Centrifuge for microcentrifuge tubes
- Equipment for sample disruption and homogenization (see section 2.4)
- Personal protection equipment (lab coat, gloves, goggles)

1.3 About this user manual

It is strongly recommended for first time users to read the detailed protocol sections of the NucleoSpin® RNA Plant and Fungi kit before using this product. Experienced users, however, may refer to the Protocol-at-a-glance instead. The Protocol-at-a-glance is designed to be used only as a supplemental tool for quick referencing while performing the purification procedure.

All technical literature is available online at www.mn-net.com.

Please contact Technical Service regarding information about any changes to the current user manual compared with previous revisions.
2 Product description

2.1 The basic principle

The NucleoSpin® RNA Plant and Fungi kit is designed for the isolation of RNA from diverse plant and fungal material, including samples rich in starch, sugar, secondary metabolites and other compounds that might interfere with common RNA isolation procedures.

First, plant material is mechanically disrupted (e.g., by NucleoSpin® Bead Tubes, grinding in liquid nitrogen, or any other suitable disruption method) in lysis buffer containing large amounts of chaotropic ions. This lysis buffer immediately inactivates RNases, which are present in virtually all biological materials. After removal of plant debris with the NucleoSpin® Plant and Fungi Filter, a binding solution is added which creates appropriate binding conditions which favor adsorption of RNA to the silica membrane. Washing steps with two different buffers remove salts, metabolites and macromolecular cellular components. Pure RNA is finally eluted under low ionic strength conditions with RNase-free water.

The RNA preparation using NucleoSpin® RNA Plant and Fungi can be performed at room temperature. The eluate, however, should be treated with care because RNA is very sensitive to trace contaminations of RNase, often found on general lab ware, fingerprints, and dust. To ensure RNA stability, keep RNA frozen at -20 °C for short-term or at -70 °C for long-term storage.

2.2 Kit specifications

- NucleoSpin® RNA Plant and Fungi is recommended for the isolation of RNA from diverse plant tissues and organs as well as filamentous fungi. The kit is not suitable for the isolation of small RNA (< 200 nt).
- Typically, 50–500 mg sample input is recommended per preparation. Please refer to Table 2 (page 12) for detailed recommendations.
- NucleoSpin® RNA Plant and Fungi Filters for removal of tissue debris are included in the kit.
- The kit allows the isolation of up to 70 µg RNA, suitable for downstream applications such as qRT-PCR, cDNA synthesis, Northern blotting and others.
Table 1: Kit specifications at a glance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>NucleoSpin® RNA Plant and Fungi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format</td>
<td>Mini spin column</td>
</tr>
<tr>
<td>Sample material</td>
<td>< 500 mg plant/fungal material</td>
</tr>
<tr>
<td>Fragment size</td>
<td>> 200 nt</td>
</tr>
<tr>
<td>Typical yield</td>
<td>20–70 µg</td>
</tr>
<tr>
<td>A${260}$/A${280}$</td>
<td>1.9–2.1</td>
</tr>
<tr>
<td>A${260}$/A${230}$</td>
<td>~ 2</td>
</tr>
<tr>
<td>Typical RIN (RNA Integrity Number)</td>
<td>7–9</td>
</tr>
<tr>
<td>Elution volume</td>
<td>50 µL</td>
</tr>
<tr>
<td>Preparation time</td>
<td>25 min/6 preps</td>
</tr>
<tr>
<td>Binding capacity</td>
<td>200 µg</td>
</tr>
</tbody>
</table>

2.3 Handling, preparation, and storage of starting materials

RNA is not protected against digestion by plant RNase until the sample material is flash frozen or disrupted in the presence of RNase inhibiting or denaturing agents. Therefore it is important that samples are processed as fresh as possible or flash frozen in liquid N$_2$ immediately and stored at -70 °C. If frozen samples are used as sample material, it is very important that the sample will only thaw during the mechanical disruption in the presence of lysis buffer. Otherwise the RNA quality will be immediately impaired.

Plant material lysed in Lysis buffer PFL can be stored at -20 °C for at least 2 weeks.

Wear gloves at all times during the preparation. Change gloves frequently.

2.4 Lysis and disruption of sample material

For most plant sample material a mechanical disruption is a necessity. Several disruption options are possible.

Mortar, pestle and liquid nitrogen

This common sample disruption method can be used for most sample types. It typically gives excellent RNA quality; however, RNA yield can be lower compared to the extraction with bead tubes or extraction bags (see below).

Bead tubes

NucleoSpin® Bead Tubes Type G (see section 6.3 for ordering information) are recommended in combination with a swing-mill for most plant materials. Bead Tubes
typically give highest yield, avoid any cross-contamination, and enable time-efficient sample disruption.

2.5 Elution procedures

It is possible to adapt the elution method and elution volume in order to achieve optimal RNA concentrations for the respective downstream application. In addition to the standard method described in the individual protocols (recovery rate about 70–90 %), modifications are possible.

- **High yield**: Perform two elution steps with the volume indicated in the individual protocol. About 90–100 % of bound nucleic acid will be eluted.

- **High yield and high concentration**: Elute with the standard elution volume and apply the eluate once more onto the column for re-elution.

Eluted RNA should immediately be kept on ice for optimal stability. For short-term storage freeze at -20 °C, for long-term storage freeze at -70 °C.
3 Storage conditions and preparation of working solutions

Attention: Buffers PFL and PFW1 contain chaotropic salt. Wear gloves and goggles!

CAUTION: Lysis Buffer contains guanidine hydrochloride which can form highly reactive compounds when combined with bleach (sodium hypochlorite). DO NOT add bleach or acidic solutions directly to the sample-preparation waste.

All kit components should be stored at room temperature (18–25 °C) and are stable for at least one year. Storage at lower temperatures may cause precipitation of salts.

Before starting any NucleoSpin® RNA Plant and Fungi protocol prepare the following:

Wash Buffer PFW2: Add the indicated volume of 96–100 % ethanol (see table below) to Wash Buffer PFW2. Mark the label of the bottle to indicate that ethanol was added. Wash Buffer PFW2 can be stored at room temperature (18–25 °C) for at least one year.

<table>
<thead>
<tr>
<th>NucleoSpin® RNA Plant and Fungi</th>
<th>10 preps</th>
<th>50 preps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wash Buffer PFW2 (concentrate)</td>
<td>6 mL</td>
<td>12 mL</td>
</tr>
<tr>
<td></td>
<td>Add 24 mL ethanol</td>
<td>Add 48 mL ethanol</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REF</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>740120.10</td>
<td>10 preps</td>
<td></td>
</tr>
<tr>
<td>740120.50</td>
<td>50 preps</td>
<td></td>
</tr>
</tbody>
</table>
4 Safety instructions

The following components of the NucleoSpin® RNA Plant and Fungi kit contain hazardous contents.

Wear gloves and goggles and follow the safety instructions given in this section.

GHS classification

Only harmful features do not need to be labeled with H and P phrases up to 125 mL or 125 g. Mindergefährliche Eigenschaften müssen bis 125 mL oder 125 g nicht mit H- und P-Sätzen gekennzeichnet werden.

<table>
<thead>
<tr>
<th>Component</th>
<th>Hazard contents</th>
<th>GHS symbol</th>
<th>Hazard phrases</th>
<th>Precaution phrases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalt</td>
<td>Gefahrstoff</td>
<td>H-Sätze</td>
<td>P-Sätze</td>
<td></td>
</tr>
<tr>
<td>PFL</td>
<td>Guanidine hydrochloride 36–50 %</td>
<td>![]</td>
<td>302, 319</td>
<td>264, 280, 301+312, 305+351+338, 330, 337+313</td>
</tr>
<tr>
<td></td>
<td>Guanidinhydrochlorid 36–50 %</td>
<td>![]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAS 50-01-1</td>
<td>![]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFR</td>
<td>Sodium sulfite 10–20 %</td>
<td>![]</td>
<td>302, 315, 319</td>
<td>264, 280, 301+312, 302+352, 305+351+338, 330, 332+313, 337+313</td>
</tr>
<tr>
<td></td>
<td>Natriumsulfit 10–20 %</td>
<td>![]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAS 7757-83-7</td>
<td>![]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFB</td>
<td>Lithium chloride 40–70 %</td>
<td>![]</td>
<td>302, 315, 319</td>
<td>264, 280, 301+312, 302+352, 305+351+338, 330, 332+313, 337+313</td>
</tr>
<tr>
<td></td>
<td>Lithiumchlorid 40–70 %</td>
<td>![]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAS 7447-41-8</td>
<td>![]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hazard phrases

H 302 Harmful if swallowed.

Gesundheitsschädlich bei Verschlucken.

H 315 Causes skin irritation.

Verursacht Hautreizungen.

H 319 Causes serious eye irritation.

Verursacht schwere Augenreizung.

Precaution phrases

P 264 Wash … thoroughly after handling.

Nach Handhabung … gründlich waschen.

P 280 Wear protective gloves / protective clothing / eye protection / face protection.

Schutzhandschuhe / Schutzkleidung / Augenschutz / Gesichtsschutz tragen.

P 301+312 IF SWALLOWED: Call a POISON CENTER / doctor / … / if you feel unwell.

BEI VERSCHLUCKEN: Bei Unwohlsein GIFTINFORMATIONSZENTRUM/Arzt / … anrufen.
RNA isolation from plant and fungi

P 302+352 IF ON SKIN: Wash with plenty of water/ …
BEI BERÜHRUNG MIT DER HAUT: Mit viel Wasser/… waschen.

P 305+351+338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

P 330 Rinse mouth.
Mund ausspülen.

P 332+313 If skin irritation occurs: Get medical advice / attention.
Bei Hautreizung: Ärztlichen Rat einholen/ärztliche Hilfe hinzuziehen.

P 337+313 If eye irritation persists: Get medical advice / attention.
Bei anhaltender Augenreizung: Ärztlichen Rat einholen/ärztliche Hilfe hinzuziehen.

⚠️ The symbol shown on labels refers to further safety information in this section.
Das auf Etiketten dargestellte Symbol weist auf weitere Sicherheitsinformationen dieses Kapitels hin.

For further information please see Material Safety Data Sheets (www.mn-net.com).
Weiterführende Informationen finden Sie in den Sicherheitsdatenblättern (www.mn-net.com).
Protocols

Please refer to Table 2 for choosing the optimal protocol, sample amount and buffer volumes.

Table 2: Recommendations for different sample types

<table>
<thead>
<tr>
<th>Sample type</th>
<th>Sample amount per preparation</th>
<th>Buffer PFR</th>
<th>Buffer PFR</th>
<th>Recommended protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samples rich in secondary metabolites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grape vine leaf</td>
<td>100 mg</td>
<td>50 µL</td>
<td>500 µL</td>
<td>5.1</td>
</tr>
<tr>
<td>Noble fir</td>
<td>50 mg</td>
<td>20 µL</td>
<td>500 µL</td>
<td>5.1</td>
</tr>
<tr>
<td>Spruce needle</td>
<td>50 mg</td>
<td>20 µL</td>
<td>500 µL</td>
<td>5.1</td>
</tr>
<tr>
<td>Ginger rhizome</td>
<td>500 mg</td>
<td>50 µL</td>
<td>500 µL</td>
<td>5.1</td>
</tr>
<tr>
<td>Fruit tissue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kiwi</td>
<td>500 mg</td>
<td>20 µL</td>
<td>750 µL</td>
<td>5.2</td>
</tr>
<tr>
<td>Citrus fruit</td>
<td>500 mg</td>
<td>20 µL</td>
<td>750 µL</td>
<td>5.2</td>
</tr>
<tr>
<td>Apple</td>
<td>500 mg</td>
<td>10 µL</td>
<td>750 µL</td>
<td>5.2</td>
</tr>
<tr>
<td>Grape berry</td>
<td>500 mg</td>
<td>50 µL</td>
<td>750 µL</td>
<td>5.1</td>
</tr>
<tr>
<td>Blueberry</td>
<td>500 mg</td>
<td>20 µL</td>
<td>500 µL</td>
<td>5.2</td>
</tr>
<tr>
<td>Tomato</td>
<td>500 mg</td>
<td>20 µL</td>
<td>750 µL</td>
<td>5.1</td>
</tr>
<tr>
<td>Leaves</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tobacco</td>
<td>100 mg</td>
<td>50 µL</td>
<td>500 µL</td>
<td>5.1</td>
</tr>
<tr>
<td>Wheat</td>
<td>100 mg</td>
<td>20 µL</td>
<td>500 µL</td>
<td>5.1</td>
</tr>
<tr>
<td>Maize</td>
<td>100 mg</td>
<td>20 µL</td>
<td>500 µL</td>
<td>5.1</td>
</tr>
<tr>
<td>Arabidopsis</td>
<td>100 mg</td>
<td>20 µL</td>
<td>500 µL</td>
<td>5.1</td>
</tr>
<tr>
<td>Samples with high starch content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maize kernel</td>
<td>100 mg</td>
<td>50 µL</td>
<td>500 µL</td>
<td>5.1</td>
</tr>
<tr>
<td>Wheat kernel</td>
<td>90 mg</td>
<td>20 µL</td>
<td>500 µL</td>
<td>5.1</td>
</tr>
<tr>
<td>Potato tuber</td>
<td>50 mg</td>
<td>50 µL</td>
<td>500 µL</td>
<td>5.1</td>
</tr>
</tbody>
</table>
Table 2: Recommendations for different sample types

<table>
<thead>
<tr>
<th>Sample amount per preparation</th>
<th>Buffer PFR</th>
<th>Buffer PFB</th>
<th>Recommended protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other seeds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arabidopsis seeds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 seeds</td>
<td>20 µL</td>
<td>750 µL</td>
<td>5.1</td>
</tr>
<tr>
<td>Alfalfa seed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 mg</td>
<td>20 µL</td>
<td>750 µL</td>
<td>5.1</td>
</tr>
<tr>
<td>Cotton seed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 seed (~100mg)</td>
<td>20 µL</td>
<td>750 µL</td>
<td>5.1</td>
</tr>
<tr>
<td>Roots</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alfalfa root</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300 mg</td>
<td>10 µL</td>
<td>500 µL</td>
<td>5.1</td>
</tr>
<tr>
<td>Pea root</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180–280 mg</td>
<td>20 µL</td>
<td>500 µL</td>
<td>5.1</td>
</tr>
<tr>
<td>Sugar beet (root)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 mg</td>
<td>10 µL</td>
<td>500 µL</td>
<td>5.1</td>
</tr>
<tr>
<td>Other sample types</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar cane (stem)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 mg</td>
<td>20 µL</td>
<td>500 µL</td>
<td>5.1</td>
</tr>
<tr>
<td>Fungal hyphae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 mg</td>
<td>20 µL</td>
<td>750 µL</td>
<td>5.2</td>
</tr>
<tr>
<td>Fungal fruiting body</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50–100 mg</td>
<td>10 µL</td>
<td>500 µL</td>
<td>5.1</td>
</tr>
<tr>
<td>Moss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 mg</td>
<td>10 µL</td>
<td>500 µL</td>
<td>5.1</td>
</tr>
</tbody>
</table>
5.1 RNA isolation from plant and fungal material

Before starting the preparation:
• Check if Wash Buffer PFW2 was prepared according to section 3.

1 Homogenize sample

Option A: Mortar, pestle, and liquid nitrogen

Add 500 µL Buffer PFL into a 1.5 or 2 mL microcentrifuge tube (not provided).

Add 10–50 µL Buffer PFR to the tube. See table 2 for optimal volume of Buffer PFR.

Precool mortar and pestle with liquid nitrogen or at -70 °C in a freezer.

Add the sample into the mortar containing liquid nitrogen. For optimal sample input, follow the recommendations given in Table 2.

Grind sample under liquid nitrogen until a fine powder is obtained.

Transfer sample to the Buffer PFL/PFR mixture and mix immediately. The plant material shall only thaw within the lysis buffer.

Incubate lysis tube for 5 min at 56 °C.

Note: Do not perform this heat incubation for samples with high starch content, e.g., potato tubers or wheat kernel.

Centrifuge for 1 min at 14,000 x g in order to sediment cell debris.

Note: If the cell debris pellet is not sufficiently solid, centrifuge for a longer time (e.g., 3 min) and/or at 20,000 x g.

Continue with the clear supernatant.
Option B: Bead Tubes (not provided)

Add 500 µL Buffer PFL into NucleoSpin® Bead Tubes Type G.

Add 10–50 µL Buffer PFR to the tube. See table 2 for optimal volume of Buffer PFR.

Transfer sample to the NucleoSpin® Bead Tube Type G. For optimal sample input, follow the recommendations given in table 2.

Place the Bead Tube into a swing-mill and agitate twice for 30 s at 30 Hz with intermediate position change (please refer to the manufacturers’ instructions for proper use of the instrument).

Incubate NucleoSpin® Bead Tube Type G for 5 min at 56 °C.

Note: Do not perform this heat incubation for samples with high starch content, e.g., potato tubers or wheat kernel.

Remove steel balls from the Bead Tube.

Attention: Removal of steel balls is necessary in order to avoid tube damage during subsequent centrifugation.

Centrifuge for 1 min at 14,000 x g in order to sediment cell debris.

Note: If the cell debris pellet is not sufficiently solid, centrifuge for a longer time (e.g. 3 min) and/or at 20,000 x g.

Continue with the clear supernatant.
2 **Filtrate Lysate**

Insert a NucleoSpin® RNA Plant and Fungi Filter Column (green ring) into a Collection Tube (2 mL, provided).

Note: Alternatively use a 2 mL microcentrifuge tube with lid (not provided). This facilitates mixing by vortexing in step 3.

Load the clear lysate from step 1 onto the column.

Centrifuge for 1 min at 14,000 x g.

Note: In some cases a small pellet will form. This pellet does not have to be removed and can be processed together with the supernatant.

Note: If the sample does not pass the column completely, centrifuge at 20,000 x g for additional 3 min.

3 **Adjust RNA binding conditions**

Add 500 µL Buffer PFB to the flow-through and mix by pipetting.

Note: Please refer to Table 2 for recommendations on Buffer PFB increase for certain sample types.

Incubate for 5 min at room temperature.

4 **Bind RNA**

For each preparation take one NucleoSpin® RNA Plant and Fungi Column (light blue ring) preassembled with a Collection Tube.

Load 650 µL of the sample onto the NucleoSpin® RNA Plant and Fungi column.

Centrifuge for 30 s at 14,000 x g.

Discard the flow-through and reuse the collection tube.

Load the residual sample volume (approx. 200 µL) onto the column.

Centrifuge for 30 s at 14,000 x g.

Discard collection tube with flow-through and insert the column into a fresh Collection Tube (2 mL, provided).
5 Wash and dry silica membrane

1st wash
Add 500 µL Buffer PFW1 onto the column.
Centrifuge for 1 min at 14,000 x g.
Discard collection tube with flow-through and insert column into a fresh Collection Tube (2 mL, provided).

2nd wash
Add 500 µL Buffer PFW2 onto the column.
Centrifuge for 1 min at 14,000 x g.
Discard flow-through and reuse collection tube.

3rd wash
Add 500 µL Buffer PFW2 onto the column.
Centrifuge for 1 min at 14,000 x g.
Discard flow-through and discard collection tube unless the following additional wash step is included.

Optional: For some samples an additional wash step is recommended. These samples cause a discoloring of the silica or the eluate after the 3rd washing step. Such samples are e.g., conifer needles, blueberry fruits, and grape leaves.

Add 500 µL Wash Buffer PFW2 onto the column.
Centrifuge for 1 min at 14,000 x g.
Discard collection tube with flow-through.

6 Elute RNA
Insert column into a fresh Collection Tube (1.5 mL, provided).

Add 50 µL RNase-free H₂O onto the column.
Incubate for approximately 1 min at room temperature.
Centrifuge for 1 min at 14,000 x g.
If higher RNA concentrations are desired, elution can be done with 40 µL. Overall yield, however, will decrease when using smaller volumes.

For further alternative elution procedures see section 2.5.
5.2 RNA isolation from acidic samples (e.g., fruits)

Before starting the preparation:

- Check if Wash Buffer PFW2 was prepared according to section 3.
- Check if Neutralization Buffer PFN is available (see section 6.3 for ordering information).

<table>
<thead>
<tr>
<th>Sample type (fruit tissue)</th>
<th>Buffer PFN per preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiwi</td>
<td>50 µL</td>
</tr>
<tr>
<td>Lemon</td>
<td>50 µL</td>
</tr>
<tr>
<td>Apple</td>
<td>15 µL</td>
</tr>
<tr>
<td>Tomato</td>
<td>15 µL</td>
</tr>
<tr>
<td>Orange</td>
<td>15 µL</td>
</tr>
</tbody>
</table>
1 Homogenize sample

Option A: Mortar, pestle, and liquid nitrogen

Add 500 µL Buffer PFL into a 1.5 or 2 mL microcentrifuge tube (not provided).

Add 10–50 µL Buffer PFR to the tube. See Table 2 for optimal volume of Buffer PFR.

Add 10–50 µL Buffer PFN to the tube. See Table 3 below for recommended volume of Buffer PFN.

Precool mortar and pestle with liquid nitrogen or at -70 °C.

Add 500 mg sample to the mortar containing liquid nitrogen.

Grind sample in liquid nitrogen until a fine powder is obtained.

Transfer sample to the microcentrifuge tube containing the buffer mixture and mix immediately. The plant material shall only thaw within the lysis buffer.

Centrifuge for 1 min at 14,000 x g in order to sediment cell debris.

Note: If the cell debris pellet is not sufficiently solid, centrifuge for a longer time (e.g., 3 min) and/or at 20,000 x g.

Transfer the clear supernatant to a fresh tube (not provided).

Note: For acidic samples it is important to remove cell debris prior to heat incubation.

Incubate lysis tube for 5 min at 56 °C.
Option B: NucleoSpin® Bead Tubes Type G (not provided)

Add 500 µL Buffer PFL into NucleoSpin® Bead Tube Type G.

Add 10–50 µL Buffer PFR to the tube. See Table 2 for optimal volume of Buffer PFR.

Add 10–50 µL Buffer PFN to the tube. For an appropriate amount see the Table 3.

Transfer 500 mg sample material into the NucleoSpin® Bead Tube Type G.

Place the Bead Tube into a swing-mill and agitate twice for 30 s at 30 Hz with intermediate position change (please refer to the manufacturers’ instructions for proper use of the machine).

Remove steel balls from the NucleoSpin® Bead Tube Type G.

Attention: Removal of steel balls is necessary in order to avoid tube damage during subsequent centrifugation.

Centrifuge for 1 min at 14,000 x g in order to sediment cell debris.

Note: If the cell debris pellet is not sufficiently solid, centrifuge for a longer time (e.g. 3 min) and/or at 20,000 x g

Transfer the clear supernatant into a fresh tube (not provided).

Note: For acidic samples it is important to remove the cell debris before prior to heat incubation.

Incubate sample for 5 min at 56 °C.

Continue with protocol 5.1, step 2: “Filtrate lysate”
6 Appendix

6.1 Removal of DNA

In case samples with high initial DNA content are analyzed by downstream applications highly sensitive towards DNA contamination, an additional DNA digest might be required. Protocols for DNase treatments are given below.

Protocol A: DNA digestion in solution

1 Digest DNA (Reaction setup)

 Add 6 μL Reaction Buffer for rDNase and 0.6 μL rDNase to 60 μL eluted RNA.

 (Alternatively premix 100 μL Reaction Buffer for rDNase and 10 μL rDNase and add 1/10 volume to one volume of RNA eluate). Gently swirl the tube in order to mix the solution. Spin down gently (approx. 1 s at 1,000 x g) to collect every droplet of the solution at the bottom of the tube.

2 Incubate sample

 Incubate for **10 min** at **37 °C**.

3 Repurify RNA

 Repurify RNA with a suitable RNA cleanup procedure, for example by use of the NucleoSpin® RNA Clean-up, NucleoSpin® RNA Clean-up XS kits (see ordering information), or by ethanol precipitation.

 Ethanol precipitation, exemplary

 Add 0.1 volume of **3 M sodium acetate, pH 5.2** and 2.5 volumes of **96–100 % ethanol** to one volume of sample. Mix thoroughly.

 Incubate **several minutes** to **several hours** at **-20 °C** or **4 °C**.

 Note: Choose **long incubation times if the sample contains low RNA concentration**.

 Short incubation times are sufficient if the sample contains high RNA concentration.

 Centrifuge for **10 min** at **maximum speed**.

 Wash RNA pellet with 70 % ethanol.

 Dry RNA pellet and resuspend RNA in RNase-free H₂O.
Protocol B: On-column DNA digestion

Reconstitution of rDNase
Add 4 mL Reaction Buffer for rDNase into a rDNase Vial Size F and dissolve the DNase.

On-column digestion into purification procedure
Follow the purification procedure according to section 5.1 until the column has been washed with 500 µL Buffer PFW1 (in step 5).

Apply **95 µL rDNase reaction mixture** directly onto the center of the silica membrane of the column.

Incubate at **room temperature** for **15 min**.

Continue the procedure 5.1, step 5, by adding 500 µL Buffer PFW2 onto the column.

6.2 Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause and suggestion</th>
</tr>
</thead>
</table>
| Clogged NucleoSpin® RNA Plant and Fungi Filter | *Too much sample material*
 - Use less sample material and/or centrifuge for 3 min at 20,000 x g. |
| Poor RNA quality or yield | *Fruit tissue sample not cleared prior to heat incubation*
 - Clear fruit tissue sample lysates and perform the heat incubation with the clear supernatant only.
 Sample with high starch content was heat incubated
 - Samples such as potato tubers, maize kernels, wheat kernels and similar should not be incubated at elevated temperatures during the RNA purification procedure
 - However, banana fruit tissue of ripe fruits should be heat incubated in order to obtain high RNA yield. |
| Poor RNA purity and or colored silica membrane/eluate | *Washing steps not sufficient*
 - Perform an additional wash step with Buffer PFW2. |
<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause and suggestion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor RNA quality or yield</td>
<td>RNase contamination
- Create an RNase-free working environment. Wear gloves during all steps of the procedure. Change gloves frequently. Use of sterile, disposable polypropylene tubes is recommended. Keep tubes closed whenever possible during the preparation. Glassware should be oven-baked for at least 2 hours at 250 °C before use.</td>
</tr>
<tr>
<td></td>
<td>Insufficient sample quality
- Control sample harvest, storage, and lysis. Make sure that samples are harvested, stored and lysed adequately in order to preserve RNA integrity. Whenever possible, use fresh material. If this is not possible, flash freeze the samples in liquid nitrogen. Samples should always be kept at -70 °C. Never allow tissues to thaw before addition of Lysis Buffer. Perform disruption of samples in liquid nitrogen.</td>
</tr>
<tr>
<td></td>
<td>Insufficient sample disruption
- Choose a different disruption method. If one disruption method gives unsatisfactory results, try an alternative disruption method.</td>
</tr>
</tbody>
</table>
| | **Reagents not applied or restored properly**
- Prepare Buffer PFW2 by adding ethanol according to the description.
- Sample and reagents have not been mixed completely. Always vortex vigorously after each reagent has been added. |
| | **Kit storage**
- Store kit components at room temperature. Storage at low temperature may cause salt precipitation.
- Keep bottles tightly closed in order to prevent evaporation or contamination |
<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause and suggestion</th>
</tr>
</thead>
</table>
| Poor RNA quality or yield *(continued)* | **Ionic strength and pH influence** A_{260} absorption as well as ratio A_{260}/A_{280}
- For adsorption measurement, use 5 mM Tris pH 8.5 as diluent. Please see also:
| Low A_{260}/A_{230} ratio | **Carry-over of contaminants**
- Carefully load the lysate to the NucleoSpin® RNA Plant and Fungi Column and try to avoid a contamination of the upper part of the column and the column lid.
- Make sure that a sufficient amount/concentration of RNA is used for quantification so that the A_{230} value is significantly higher than the background level.
- Measurement of low amount/concentration of RNA will cause unstable A_{260}/A_{230} ratio values. |
| Contamination of RNA with genomic DNA | **Too much cell material used**
- Reduce quantity of sample material used.
DNA detection system too sensitive
- The amount of DNA contamination is reduced by the NucleoSpin® RNA Plant and Fungi Filter Column. However, dependent on the sample type and amount, it can not be guaranteed that the purified RNA is 100% free of DNA. Therefore, in very sensitive applications, it might still be possible to detect DNA. The probability of DNA detection with PCR increases with:
 - the number of DNA copies per preparation: single copy target < plastidial/mitochondrial target < plasmid transfected into cells
 - decreasing of PCR amplicon size.
- Use larger PCR targets (e.g., > 500 bp) or intron spanning primers if possible.
- Use one of the support protocol, section 6.1, for subsequent DNA digestion in solution or on-column. |
<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause and suggestion</th>
</tr>
</thead>
</table>
| **Suboptimal performance of RNA in downstream experiments** | *Carry-over of ethanol or salt*
 - Do not let the flow-through touch the column outlet after the wash steps. Be sure to centrifuge at the corresponding speed for the respective time in order to remove last wash buffer completely.
 - Check if wash buffer has been equilibrated to room temperature before use. Washing at lower temperatures lowers efficiency of salt removal by wash buffer.
| **Store isolated RNA properly** |
 - Eluted RNA should always be kept on ice for optimal stability since trace contaminations of omnipresent RNases (general lab ware, fingerprints, dust) will degrade the isolated RNA. For short term storage freeze at -20 °C, for long term storage freeze at 70 °C.
| **Damaged Bead Tubes Type G** | *Beads not removed from Bead Tube*
 - Remove steel balls from the Bead Tube by placing a magnet on top of the lid. Invert the tube once. Open the tube and remove steel balls attached to the lid. |
6.3 Ordering Information

<table>
<thead>
<tr>
<th>Product</th>
<th>REF</th>
<th>Preps/Pack of</th>
</tr>
</thead>
<tbody>
<tr>
<td>NucleoSpin® RNA Plant and Fungi</td>
<td>740120.10/.50</td>
<td>10/50</td>
</tr>
<tr>
<td>Lysis Buffer PFL</td>
<td>740122.30</td>
<td>30 mL</td>
</tr>
<tr>
<td>Reduction Buffer PFR</td>
<td>740123.5</td>
<td>5 mL</td>
</tr>
<tr>
<td>Neutralization Buffer PFN</td>
<td>740121.5</td>
<td>5 mL</td>
</tr>
<tr>
<td>Wash Buffer PFW2 (concentrate)</td>
<td>740124.12</td>
<td>12 mL</td>
</tr>
<tr>
<td>NucleoSpin® Bead Tubes Type G</td>
<td>740817.50</td>
<td>50</td>
</tr>
<tr>
<td>NucleoSpin® RNA Clean-up</td>
<td>740948.10/.50/.250</td>
<td>10/50/250</td>
</tr>
<tr>
<td>NucleoSpin® RNA Clean-up XS</td>
<td>740903.10/.50/.250</td>
<td>10/50/250</td>
</tr>
<tr>
<td>NucleoSpin® RNA/Protein</td>
<td>740933.10/.50/.250</td>
<td>10/50/250</td>
</tr>
<tr>
<td>NucleoSpin® TriPrep</td>
<td>740966.10/.50/.250</td>
<td>10/50/250</td>
</tr>
<tr>
<td>NucleoSpin® miRNA</td>
<td>740974.10/.50/.250</td>
<td>10/50/250</td>
</tr>
<tr>
<td>NucleoZOL</td>
<td>740404.200</td>
<td>200 mL</td>
</tr>
<tr>
<td>NucleoSpin® RNA Set for NucleoZOL</td>
<td>740406.10/.50</td>
<td>10/50</td>
</tr>
<tr>
<td>rDNase Set</td>
<td>740963</td>
<td>1</td>
</tr>
<tr>
<td>Collection Tubes (2 mL)</td>
<td>740600</td>
<td>1000</td>
</tr>
</tbody>
</table>
6.4 Product use restriction / warranty

NucleoSpin® RNA Plant and Fungi kit components were developed, designed and sold for research purposes only. They are suitable for in vitro uses only. No claim or representation is intended for its use to identify any specific organism or for clinical use (diagnostic, prognostic, therapeutic, or blood banking).

It is rather the responsibility of the user to verify the use of the NucleoSpin® RNA Plant and Fungi kits for a specific application range as the performance characteristic of this kit has not been verified to a specific organism.

This MACHEREY-NAGEL product is shipped with documentation stating specifications and other technical information. MACHEREY-NAGEL warrants to meet the stated specifications. MACHEREY-NAGEL’s sole obligation and the customer’s sole remedy is limited to replacement of products free of charge in the event products fail to perform as warranted. Supplementary reference is made to the general business terms and conditions of MACHEREY-NAGEL, which are printed on the price list. Please contact us if you wish an extra copy.

MACHEREY-NAGEL does not warrant against damages or defects arising in shipping and handling (transport insurance for customers excluded), or out of accident or improper or abnormal use of this product; against defects in products or components not manufactured by MACHEREY-NAGEL, or against damages resulting from such non-MACHEREY-NAGEL components or products.

MACHEREY-NAGEL makes no other warranty of any kind whatsoever, and SPECIFICALLY DISCLAIMS AND EXCLUDES ALL OTHER WARRANTIES OF ANY KIND OR NATURE WHATSOEVER, DIRECTLY OR INDIRECTLY, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, AS TO THE SUITABILITY, REPRODUCTIVITY, DURABILITY, FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, CONDITION, OR ANY OTHER MATTER WITH RESPECT TO MACHEREY-NAGEL PRODUCTS.

In no event shall MACHEREY-NAGEL be liable for claims for any other damages, whether direct, indirect, incidental, compensatory, foreseeable, consequential, or special (including but not limited to loss of use, revenue or profit), whether based upon warranty, contract, tort (including negligence) or strict liability arising in connection with the sale or the failure of MACHEREY-NAGEL products to perform in accordance with the stated specifications. This warranty is exclusive and MACHEREY-NAGEL makes no other warranty expressed or implied.

The warranty provided herein and the data, specifications and descriptions of this MACHEREY-NAGEL product appearing in MACHEREY-NAGEL published catalogues and product literature are MACHEREY-NAGEL’s sole representations concerning the product and warranty. No other statements or representations, written or oral, by MACHEREY-NAGEL’s employees, agent or representatives, except written statements signed by a duly authorized officer of MACHEREY-NAGEL are authorized; they should not be relied upon by the customer and are not a part of the contract of sale or of this warranty.

Product claims are subject to change. Therefore please contact our Technical Service Team for the most up-to-date information on MACHEREY-NAGEL products. You
RNA isolation from plant and fungi

may also contact your local distributor for general scientific information. Applications mentioned in MACHEREY-NAGEL literature are provided for informational purposes only. MACHEREY-NAGEL does not warrant that all applications have been tested in MACHEREY-NAGEL laboratories using MACHEREY-NAGEL products. MACHEREY-NAGEL does not warrant the correctness of any of those applications.

Please contact:
MACHEREY-NAGEL Germany
Tel.: +49 (0) 24 21 969-270
e-mail: TECH-BIO@mn-net.com

Trademarks:

NucleoSpin is a registered trademark of MACHEREY-NAGEL GmbH & Co KG

All used names and denotations can be brands, trademarks or registered labels of their respective owner – also if they are not special denotation. To mention products and brands is only a kind of information, i.e. it does not offend against trademarks and brands and can not be seen as a kind of recommendation or assessment. Regarding these products or services we can not grant any guarantees regarding selection, efficiency or operation.