Store at -20C

59

mAb mix

Cell Signaling Phospho-AMPK Substrate Motif [LXRXX(pS/pT) MultiMab[®] Rabbit ECHNOLOGY®

877-616-CELL (2355) Orders: orders@cellsignal.com Support: 877-678-TECH (8324) Web: info@cellsignal.com cellsignal.com

3 Trask Lane | Danvers | Massachusetts | 01923 | USA

For Research Use Only. Not for Use in Diagnostic Procedures.

Applications:	Reactivity:	Sensitivity:	Source/Isotype:	
WB, IP, E-P	All	Endogenous	Rabbit	
Product Usage Information	Apı We Imn Pep	Jlication stern Blotting nunoprecipitation tide ELISA (DELFI	A)	Dilution 1:1000 1:100 1:1000
Storage	Supp	olied in 10 mM sodi	ium HEPES (pH 7.5), 15	50 mM NaCl, 100 μg/ml BSA, 50% glycerol and less than
	0.02	% sodium azide. S ^a	tore at –20°C. Do not ali	iquot the antibody.
Specificity / Sensiti	vity Phos	pho-AMPK Substr	ate Motif [LXRXX(pS/pT]	⁻) MultiMab [®] Rabbit mAb mix preferentially recognizes
	endo	genous proteins a	nd peptides bearing the l	LXRXXpS/pT motif. The antibody also cross-reacts with
	prote	ins and peptides tl	hat only harbor an RXXp	pS/pT motif.
Source / Purificatio	n Multi clone base broa the r	Mab [®] rabbit monod es in optimized ration d on motif recognit dest possible cover nodification or moti	clonal mix antibodies are os for the approved appl tion and performance in rage of the modification I f.	e prepared by combining individual rabbit monoclonal lications. Each antibody in the mix is carefully selected multiple assays. Each mix is engineered to yield the being studied while ensuring a high degree of specificity for
Background	AMP	-activated protein I	kinase (AMPK) is highly	conserved from yeast to plants and animals and plays a
	key r	ole in the regulatio	in of energy homeostasis	s (1). AMPK is a heterotrimeric complex composed of a
	catal	ytic α subunit and I	regulatory β and γ subur	nits, each of which is encoded by two or three distinct genes
	(α1,	2; β 1, 2; γ 1, 2, 3) (2	2). The kinase is activate	ed by an elevated AMP/ATP ratio due to cellular and
	envir	onmental stress, s	uch as heat shock, hypo	oxia, and ischemia (1). The tumor suppressor LKB1, in
	asso	ciation with access	gory proteins STRAD and	d MO25, phosphorylates AMPK α at Thr172 in the activation
	loop,	and this phosphor	rylation is required for AN	MPK activation (3-5). AMPK α is also phosphorylated at
	Thr2	58 and Ser485 (for	α 1; Ser491 for α 2). The	e upstream kinase and the biological significance of these
	phos	phorylation events	have yet to be elucidate	ed (6). The β 1 subunit is post-translationally modified by
	myris	stoylation and multi	i-site phosphorylation ind	cluding Ser24/25, Ser96, Ser101, Ser108, and Ser182
	(6,7)	. Phosphorylation a	at Ser108 of the β 1 subu	unit seems to be required for AMPK activation, while
	phos	sphorylation at Ser2	24/25 and Ser182 affects	s AMPK localization (7). Several mutations in AMPKy
	subu	nits have been ide	ntified, most of which are	re located in the putative AMP/ATP binding sites (CBS or
	Bate	man domains). Mu	tations at these sites lea	ad to reduction of AMPK activity and cause glycogen
	accu	mulation in heart o	ir skeletal muscle (1,2). A	Accumulating evidence indicates that AMPK not only
	regu	lates the metabolis	m of fatty acids and glyc	cogen, but also modulates protein synthesis and cell growth
	throu	igh EF2 and TSC2	/mTOR pathways, as we	ell as blood flow via eNOS/nNOS (1).~AMPK
	phos	sphorylates consen	sus motif (L/M)XRXX(S/	(T)XXXL (8). Antibodies recognizing the LXRXX(S/T) motif
	are v	very useful in the id	lentification of AMPK sub	bstrates.
Background Refere	nces 1. Ha 2. Ca 3. Ha 4. Liz 5. Sh 6. W 7. W 8. Gv	ardie, D.G. (2004) arling, D. (2004) Tre awley, S.A. et al. (1 zcano, J.M. et al. (200 naw, R.J. et al. (200 narden, S.M. et al. (200 arden, S.M. et al. (200 arden, D.M. et al. (200	J Cell Sci 117, 5479-87. ends Biochem Sci 29, 18 996) J Biol Chem 271, 2 2004) EMBO J 23, 833-4 04) Proc Natl Acad Sci U 3) J Biol Chem 278, 284 2001) Biochem J 354, 27 008) Mol Cell 30, 214-26	8-24. 27879-87. 43. JSA 101, 3329-35. 434-42. 75-83. 5.

Species Reactivity

Species reactivity is determined by testing in at least one approved application (e.g., western blot).

Western Blot Buffer

1/1/24, 7:26 AM	Phospho	o-AMPK Substrate Motif [LXRXX(pS/pT) MultiMab® Rabbit mAb mix (#5759) Datasheet Without Ima				
		IMPORTANT: For western blots, incubate membrane with diluted primary antibody in 5% w/v BSA, 1X TBS, 0.1% Tween® 20 at 4°C with gentle shaking, overnight.				
Applications I	Кеу	WB: Western Blotting IP: Immunoprecipitation E-P: Peptide ELISA (DELFIA)				
Cross-Reactiv	/ity Key	 H: human M: mouse R: rat Hm: hamster Mk: monkey Vir: virus Mi: mink C: chicken Dm: D. melanogaster X: Xenopus Z: zebrafish B: bovine Dg: dog Pg: pig Sc: S. cerevisiae Ce: C. elegans Hr: horse GP: Guinea Pig Rab: rabbit All: all species expected 				
Trademarks a Patents	nd	Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc. MultiMab is a registered trademark of Cell Signaling Technology, Inc. All other trademarks are the property of their respective owners. Visit cellsignal.com/trademarks for more information.				
Limited Uses		Except as otherwise expressly agreed in a writing signed by a legally authorized representative of CST, the following terms apply to Products provided by CST, its affiliates or its distributors. Any Customer's terms and conditions that are in addition to, or different from, those contained herein, unless separately accepted in writing by a legally authorized representative of CST, are rejected and are of no force or effect.				
		Products are labeled with For Research Use Only or a similar labeling statement and have not been approved, cleared, or licensed by the FDA or other regulatory foreign or domestic entity, for any purpose. Customer shall not use any Product for any diagnostic or therapeutic purpose, or otherwise in any manner that conflicts with its labeling statement. Products sold or licensed by CST are provided for Customer as the end-user and solely for research and development uses. Any use of Product for diagnostic, prophylactic or therapeutic purposes, or any purchase of Product for resale (alone or as a component) or other commercial purpose, requires a separate license from CST. Customer shall (a) not sell, license, loan, donate or otherwise transfer or make available any Product to any third party, whether alone or in combination with other materials, or use the Products to manufacture any commercial products, (b) not copy, modify, reverse engineer, decompile, disassemble or otherwise attempt to discover the underlying structure or technology of the Products, or use the Products for the purpose of developing any products or services that would compete with CST products or services, (c) not alter or remove from the Products solely in accordance with CST Product Terms of Sale and any applicable documentation, and (e) comply with any license, terms of service or similar agreement with respect to any third party products or services used by Customer in connection with the Products.				